Digma Developer Guide
  • Welcome to the Digma Docs!
  • What is a Continuous Feedback platform?
  • Digma Quickstart
  • Installation
    • Local Install
      • Local Install Architecture
      • Installation Troubleshooting
    • Central (on-prem) Install
      • Resource Requirements
  • INSTRUMENTATION
    • Instrumenting your code for tracing
    • Java
      • Automatic Instrumentation in the IDE (IntelliJ)
      • Spring, Spring Boot, Dropwizard
        • Instrumenting your code in CI/Staging or the terminal
        • Instrumenting your application in Docker Compose
        • Instrumenting your application on Kubernetes
        • Covering more of your code with Observability
        • Using GitHub Actions (beta)
        • Using Micrometer Tracing (Spring Boot 3.x only)
        • Instrumenting code running in CLI
      • Quarkus, Micronaut, OpenLiberty
    • .NET
    • Correlating observability and source code commits
    • Sending Data to Digma using the OTEL Collector
    • Sending Data to Digma Using the Datadog agent
  • Use Cases
    • Design and write code more efficiently by understanding the system flows
    • Get early feedback on bottlenecks and code issues
    • Prioritize Technical Debt
  • Digma Core Concepts
    • Environments
    • Assets
    • Analytics vs. Issues
  • Digma Features
    • Issues
      • Suspected N+1
      • Excessive API calls (chatty API)
      • Bottleneck
      • Scaling Issue
      • Session In View Query Detected
      • Query Optimization Suggested
      • High number of queries
      • Slow Endpoint
    • Analytics
      • Top Usage
      • Request Breakdown
      • Duration
      • Code Nexus
      • Duration Breakdown
      • Endpoint Low/High Usage
    • Performance Impact
    • Test observability
    • Issue Criticality
  • Sample Projects
    • Spring Boot
  • Troubleshooting
    • Reporting Plugin Issues
    • Digma Overload Warning
Powered by GitBook
On this page
  • Issues
  • Analytics
  1. Digma Core Concepts

Analytics vs. Issues

In analyzing the observability data Digma creates two types of code insights:

Issues

Issues represent possible problems that need to be acknowledged, dismissed, tracked via ticket, etc. They belong on someone's bucket list.

Analytics

Analytics provide data about your code that is more useful from a design perspective. They provide data on concurrency levels, performance, runtime dependencies, usage and change impact radius.

PreviousAssetsNextIssues

Last updated 1 year ago